Selection of Classifier in Acute Abdominal Pain Diagnosis with Decision Tree Model

نویسنده

  • Robert BURDUK
چکیده

The article presents the application of the decision tree classifier to the acute abdominal pain diagnosis. The recognition task model is based on a decision tree. In this model the decision tree structure is given by the experts. For the assumed structure of the decision tree the locally optimal strategy is considered. The problem discussed in the work shows a selection of different classifiers (parameters) to the internal nodes of the decision tree. Experiments conducted for selected medical diagnosis problem shows that the use of different parameters for k-NN classification can improve the quality of classification in comparison with the situation if it is used with the same parameter for all internal nodes of the decision tree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

An Improved Medical Diagnosing of Acute Abdominal Pain with Decision Tree

In medical decision making (e.g., classification) we expect that decision will be made effectively and reliably. Decision making systems with their ability to learn automatically seem to be very appropriate for performing such tasks. Decision trees provide high classification accuracy with simple representation of gathered knowledge. Those advantages cause that decision trees have been widely u...

متن کامل

Evaluation of Suspected Pediatric Appendicitis with Alvarado Method Using a Computerized Intelligent Model

Background: Acute appendicitis is one of the common and urgent illnesses among children.  Children usually are unable to help the physicians completely due to weakness in describing the medical history. Moreover, acute appendicitis overlaps with conditions of other diseases in terms of Symptoms and signs in the first hours of presentation. These conditions lead to unwanted biases as well as err...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011